Información de la revista
Vol. 20. Núm. 1.
Páginas 47-53 (enero - febrero 2006)
Respuestas rápidas
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 20. Núm. 1.
Páginas 47-53 (enero - febrero 2006)
Originales
Open Access
Análisis coste-efectividad de tipo probabilístico del tratamiento de la apnea del sueño
Probabilistic cost-effectiveness analysis of the treatment of sleep apnea
Visitas
1189
Javier Mara,
Autor para correspondencia
jmar@hmon.osakidetza.net

Correspondencia: Dr. Javier Mar. Unidad de Gestión Sanitaria. Hospital Alto Deba. C/Zaldispe, s/n. 20500 Mondragón. Gipuzkoa. España.
, Santiago Gutiérrez-Morenob, Jim Chilcottc
a Unidad de Gestión Sanitaria, Hospital Alto Deba, Mondragón, Gipuzkoa, España
b Servicio de Evaluación y Planificación, Servicio Canario de Salud, Santa Cruz de Tenerife, Tenerife, España
c School of Health and Related Research, University of Sheffield, Sheffield, Reino Unido.
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Objetivo

En este trabajo se presenta la aplicación del análisis coste-efectividad de tipo probabilístico al tratamiento con presión continua en la vía respiratoria por vía nasal (nasal continuous positive airway pressure, nCPAP) del síndrome de la apnea obstructiva del sueño (SAOS).

Material y métodos

La base del estudio es un modelo de Markov probabilístico. Éste se caracteriza porque las variables se introducen en forma de distribuciones. El modelo se procesa mediante 2.000 simulaciones de Monte Carlo, cada una de las cuales calcula el coste y la efectividad incrementales. El resultado se analiza mediante el plano coste-efectividad, la curva de aceptabilidad, el beneficio neto y el valor esperado de la información perfecta.

Resultados

La razón coste-efectividad del tratamiento con nCPAP media calculada es de 5.480 €/año de vida ajustado por calidad (AVAC). Utilizando como umbral de eficiencia la cifra de 30.000 €/AVAC, el análisis probabilístico muestra que en el 98,5% de las simulaciones el tratamiento con nCPAP es una práctica eficiente. El valor esperado de la información perfecta muestra que el parámetro que origina más incertidumbre en el resultado es la ganancia en calidad de vida producida por el tratamiento.

Conclusiones

El análisis de tipo probabilístico ratifica el resultado de los estudios deterministas que caracterizan el tratamiento con nCPAP como una intervención eficiente. La ventaja añadida es que permite situar la incertidumbre en términos cuantitativos; en este caso la probabilidad de equivocarse es inferior al 5%. Además, el estudio muestra que para reducir esa incertidumbre la investigación debe centrarse en la mejora de la información referente a la calidad de vida.

Palabras clave:
Síndrome de apnea obstructiva del sueño
Tratamiento
Análisis coste-efectividad
Simulaciones de Monte Carlo
Abstract
Objective

To describe the application of a probabilistic costeffectiveness analysis to nasal continuous positive airway passage (nCPAP) treatment of obstructive sleep apnea syndrome (OSAS).

Material and Methods

The probabilistic model was constructed from a discrete Markov model. This probabilistic approach is characterized by the introduction of variables as probability distributions. The model performed 2,000 Monte Carlo simulations, and incremental costs and effectiveness were calculated in each. The results were analyzed through the costeffectiveness plane, the acceptability curve, the net benefit rule, and the expected value of perfect information (EVPI).

Results

The mean cost-effectiveness ratio for nCPAP treatment was 5,480 €/QALY (quality-adjusted life year). Using an acceptability threshold of 30,000 €/QALY, the probabilistic analysis showed that nCPAP was the optimal treatment in 98.5% of the simulations. The EVPI showed that the parameter causing greatest uncertainty in the final results was the quality of life gain through nCPAP treatment.

Conclusions

The results of our probabilistic analysis are endorsed by previous deterministic studies confirming that nCPAP treatment of OSAS is the most cost-effective strategy. An additional advantage of probabilistic analysis is that it allows uncertainty to be quantified; in the present case the probability of making the wrong decision was below 5%. Furthermore, this study reveals that to reduce uncertainty, research should center on improving information on quality of life.

Key words:
Obstructive sleep apnea syndrome
Treatment
Cost-effectiveness analysis
Monte Carlo simulations
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.P. Kassirer, M. Angell.
The journal's policy on cost-effectiveness analyses.
N Engl J Med, 331 (1994), pp. 669-670
[2.]
M.R. Gold, J.E. Siegel, L.B. Russell, M.C. Weinstein.
Cost-effectiveness in health and medicine.
Oxford University Press, (1996),
[3.]
B.J. O’Brien, M.F. Drummond, R.J. Labelle, A. Willan.
In search of power and significance: issues in the design and analysis of stochastic cost-effectiveness studies in health care.
Med Care, 32 (1994), pp. 150-163
[4.]
A.H. Briggs, R. Goeree, G. Blackhouse, B. O’Brien.
Probabilistic analysis of cost-effectiveness models: choosing between treatment strategies for gastroesophageal reflux disease.
Med Decis Making, 22 (2002), pp. 290-308
[5.]
National Institute for Clinical Excellence.
Guide to the methods of technology appraisal.
NICE, (2004),
[6.]
K. Claxton, P.J. Neumann, S. Araki, M.C. Weinstein.
Bayesian value-of-information analysis: an aplication to a policy model of Alzheimer's disease.
Int J Technol Asses Health Care, 17 (2001), pp. 38-55
[7.]
C. Rubio-Terrés, C. Cobo, J.A. Sacristán, L. Prieto, J. Del Llano, X. Badía, por el grupo ECOMED.
Análisis de la incertidumbre en las evaluaciones económicas de intervenciones sanitarias.
Med Clin (Barc), 122 (2004), pp. 668-674
[8.]
C. Guilleminault.
Sleep apnea syndromes.
[9.]
C. Guilleminault.
Clinical features and evaluation of obstructive sleep apnea.
Principles and practice of sleep medicine, pp. 552-558
[10.]
T. Young, P. Peppard, M. Palta, K. Mae Hla, L. Finn, B. Morgan, et al.
Population based study of sleep disordered breathing as a risk factor for hypertension.
Ann Intern Med, 157 (1997), pp. 1746-1752
[11.]
J. Terán-Santos, A. Jiménez-Gómez, J. Cordero-Guevara.
The association between sleep apnea and the risk of traffic accidents.
N Engl J Med, 340 (1999), pp. 847-851
[12.]
P. Tousignant, M.G. Cosio, R.D. Levy, P.A. Groome.
Quality adjusted life years added by treatment of obstructive sleep apnea.
Sleep, 17 (1994), pp. 52-60
[13.]
T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Webwe, S. Badr.
The occurrence of sleep-disordered breathing among middle-aged adults.
N Engl J Med, 328 (1993), pp. 1230-1235
[14.]
J.M. Montserrat, J. Amilibia, F. Barbe, F. Capote, J. Duran, N.G. Mangado, et al.
Tratamiento del síndrome de las apneas-hipopneas durante el sueño.
Arch Bronconeumol, 34 (1998), pp. 204-206
[15.]
R.D. Chervin, D.L. Murman, B.A. Malow, V. Totten.
Cost-utility of three approaches to the diagnosis od sleep apnea: polisomnography, home testing and empirical therapy.
Ann Intern Med, 130 (1999), pp. 496-505
[16.]
J. Mar, J.R. Rueda, J. Durán-Cantolla, C. Schechter, J. Chilcott.
The cost-effectiveness of nCPAP treatment in patients with moderate-tosevere obstructive sleep apnoea.
Eur Respir J, 21 (2003), pp. 515-522
[17.]
F.A. Sonnenberg, R. Beck.
Markov models in medical decision making: a practical guide.
Med Decis Making, 13 (1993), pp. 322-338
[18.]
S. MacMahon, R. Peto, J. Cutler, R. Collins, P. Sorlie, J. Neaton, et al.
Blood pressure, stroke and coronary heart disease (I). Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias.
Lancet, 335 (1990), pp. 765-774
[19.]
R. Collins, R. Peto, S. MacMahon, P. Hebert, N.H. Fiebach, K.A. Eberlein, et al.
Blood pressure, stroke and coronary heart disease (II). Short term reductions in blood pressure: overview of randomised drug trials in their epidemiological context.
Lancet, 335 (1990), pp. 827-838
[20.]
B.R. Luce, Y. Tina Shih, C. Claxton.
Inroduction: Bayesian approaches to technology assessment and decision making.
Int J Technol Assess Healt Care, 17 (2001), pp. 1-5
[21.]
A.A. Stinnett, J. Mullahy.
Net health benefits: a new framework for the analysis of uncertainty in cost-effectiveness analysis.
Med Decis Making, 18 (1998), pp. 68-80
[22.]
J.A. Sacristán, J. Oliva, J. Del Llano, L. Prieto, J.L. Pinto.
¿Qué es una tecnología sanitaria eficiente en España?.
Gac Sanit, 4 (2002), pp. 334-343
[23.]
O.T. Tengs, M.E. Adams, J.S. Pliskin, D. Gelb Safran, J.E. Siegel, M.C. Weinstein, et al.
Five-hundred life-saving interventions and their cost-effectiveness.
Risk Anal, 15 (1995), pp. 369-390
[24.]
A. Laupacis, D. Feeny, A.S. Detsky, P.X. Tugwell.
How attractive does a new technology have to be to warrant adoption and utlizacion? Tentative guidelines for using clinical and economic evaluation.
Can Med Assoc J, 146 (1992), pp. 473-481
[25.]
J. Mar, F. Rodríguez-Artalejo.
Which is more important for the efficiency of hypertension treatment? The hypertension stage, the type of drug or the therapeutic compliance.
J Hypertens, 19 (2000), pp. 149-155
[26.]
P. Plans-Rubió.
Cost-effectiveness of cardiovascular prevention programs in Spain.
Int J Technol Assess Health Care, 14 (1998), pp. 320-330
Copyright © 2006. Sociedad Española de Salud Pública y Administración Sanitaria
Descargar PDF
Idiomas
Gaceta Sanitaria
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?