Una metodología muy utilizada al analizar distintos tipos de problemas de salud se basa en los modelos de regresión: lineal, logística, etc.; estos modelos dependen de un conjunto de parámetros que hay que estimar a partir de los datos del estudio. Sin embargo, tienen el inconveniente de ser muy rígidos en el sentido de imponer, en ocasiones, relaciones demasiado estrictas entre la variable resultado y las predic-toras. Los métodos de regresión no paramétrica presentan la ventaja de no establecer a priorí ninguna restricción, permitiendo así que los datos nos indiquen la forma funcional apropiada. En este artículo se presentan algunos métodos modernos de regresión no paramétrica que además de su utilidad per se sirven de inestimable ayuda en el proceso diagnóstico de los métodos de regresión paramétrica. La disponibilidad actual del software necesario debe posibilitar su mayor utilización, lo que redundará en una mejor comprensión de los problemas de salud estudiados.
A frequently used methodology for the analysis of different kinds of health problems is based on regression models: lineal, logistic, etc.; these models depend on a set of parameters that must be estimated from the data. However, they present the drawback of being very rigid since, occasionally, they impose overly strict relations between the variables. Non-parametric regression methods present the advantage of not establishing a priori restrictions, allowing the data to indicate us the appropriate functional form. In this paper several modern non-parametric regression methods are presented that in addition to their usefulness per se can prone to be of invaluable help in the diagnostic process for parametric regression methods. The current availability of the necessary software should contribute to their increased use which, in turn, will probably lead to an improved understanding of the health problems under study.