Journal Information
Vol. 21. Issue 6.
Pages 515-524 (November - December 2007)
Vol. 21. Issue 6.
Pages 515-524 (November - December 2007)
Nota metodológica
Open Access
Comparación de dos métodos para identificar los factores asociados al inicio del consumo de cannabis en un estudio de cohortes
Comparison of two methods to identify factors associated with the onset of cannabis use in a cohort study
Visits
1101
Mònica Guxensa,b,c, Manel Nebota,c,d,
Corresponding author
mnebot@aspb.es

Correspondencia: Dr. Manel Nebot. Servei d’Avaluació i Mètodes d’Intervenció. Agència de Salut Pública de Barcelona. Pl. Lesseps, 1. 08015 Barcelona. España.
, Antònia Domingo-Salvanyc,e, Carles Arizaa,c
a Servei d’Avaluació i Mètodes d’Intervenció, Agència de Salut Pública de Barcelona; Barcelona, España
b Unitat Docent de Medicina Preventiva i Salut Pública IMAS-UPF-ASPB, Barcelona, España
c CIBER Epidemiología y Salud Pública (CIBERESP), España
d Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra, Barcelona, España
e Unitat de Recerca en Serveis Sanitaris, Institut Municipal d’Investigació Mèdica, Barcelona, España
This item has received

Under a Creative Commons license
Article information
Resumen
Objetivo

Comparar la utilidad de 2 métodos analíticos multivariados, el análisis como casos y controles (CC) y como casos y controles anidados (CCa) en una cohorte, para identificar los factores asociados al inicio del consumo de cannabis.

Métodos

Estudio longitudinal con una muestra de 1.056 alumnos de primer curso de Educación Secundaria Obligatoria (ESO), seguidos anualmente hasta cuarto de ESO. En el análisis como CC se consideraron casos los que declararon, en el cuarto año, haber consumido cannabis y controles los que no habían consumido nunca, estimando modelos de regresión logística (RL). En el análisis como CCa, se compararon los casos de cada año de seguimiento con una muestra aleatoria de controles de riesgo en ese mismo año, estimando modelos de RL condicional.

Resultados

En el análisis como CC, se identificaron 6 variables en los chicos y 9 en las chicas en los modelos bivariados, y 3 en los chicos y 4 en las chicas en los multivariados. En el análisis como CCa se obtuvieron 17 variables en los modelos bivariados y 4 en los multivariados, tanto en los chicos como en las chicas. Los estimadores del análisis como CC tenían 1,2 veces más variabilidad.

Conclusiones

El análisis como CCa permitió identificar un mayor número de factores asociados al consumo de cannabis y los estimadores fueron más precisos. El CCa puede ser una alternativa más eficiente frente al análisis como CC.

Palabras clave:
Estudio de cohortes
Casos y controles
Casos y controles anidados
Regresión logística
Regresión logística condicional
cannabis
Abstract
Objective

To compare the utility of two multivariate analytic methods, case-control (CC) analysis and nested case-control (NCC) analysis in a cohort, to identify the factors associated with the onset of cannabis use.

Methods

A longitudinal cohort study of a sample of secondary school students (n = 1,056) in the first year of secondary school was carried out. Participating students were followed-up annually until the fourth year of secondary school. In the CC analysis, students in the fourth year who reported having consumed cannabis at some time were considered cases and those who had never consumed cannabis were considered controls. Logistic regression (LR) models were estimated. In the NCC analysis, cases in each year of follow-up were compared with a random sample of controls at risk in the same year and conditional LR models were estimated. I

Results

In the CC analysis, 6 variables in boys and 9 variables in girls in bivariate models and 3 variables in boys and 4 variables in girls in multivariate models were identified. In the NCC analysis, 17 variables in univariate models and 4 in multivariate models were obtained in both boys and girls. The estimators of the CC analysis showed an average of 1.2-fold more variability.

Conclusions

A higher number of factors associated with cannabis use were identified in the NCC analysis and the estimators were more precise. NCC could be a more efficient option than CC analysis.

Key words:
Cohort study
Case-control
Nested case-control
Logistic regression
Conditional logistic regression
cannabis
Full text is only aviable in PDF
Bibliografía
[1.]
European Monitoring Centre for Drugs and Drug Addiction. Annual Report 2004: the state of the drugs problem in the European Union and Norway. Luxembourg: Office for Official Publications of the European Communities; 2004. p. 28-30 [citado 12 Jun 2006]. Disponible en: http://annualreport.emcdda.eu.int/download/ar2004-en.pdf
[2.]
J.M. Samet, A. Muñoz.
Evolution of the cohort study.
Epidemiol Rev, 20 (1998), pp. 1-14
[3.]
E. Comín, R. Torrubia, J. Mor, J.R. Villalbí, M. Nebot.
Fiabilidad de un cuestionario autoadministrado para investigar el nivel de ejercicio y el consumo de tabaco y de alcohol entre escolares.
Med Clin (Barc), 108 (1997), pp. 293-298
[4.]
A. Moncada, K. Pérez.
Fiabilidad y validez del autoinforme sobre el consumo de drogas en la población escolarizada de secundaria.
Gac Sanit, 15 (2002), pp. 406-413
[5.]
R. Kosterman, J.D. Hawkins, J. Guo, R.F. Catalano, R.D. Abbott.
The dynamics of alcohol and marijuana initiation: patterns and predictors of first use in adolescence.
Am J Public Health, 90 (2000), pp. 360-366
[6.]
C. Coffey, M. Lynskey, R. Wolfe, G.C. Patton.
Initiation and progression of cannabis use in a population-based Australian adolescent longitudinal study.
Addiction, 95 (2000), pp. 1679-1690
[7.]
M. Nebot, Z. Tomas, C. Ariza, S. Valmayor, M.J. López, O. Juárez.
Factors associated with smoking onset: 3-year cohort study of schoolchildren.
Arch Bronconeumol, 40 (2004), pp. 495-501
[8.]
V. Rodríguez, A. Tardón, M. Kogevinas, C.S. Prieto, A. Cueto, M. García, et al.
Lung cancer risk in iron and steel foundry workers: a nested case control study in Asturias, Spain.
Am J Ind Med, 38 (2000), pp. 644-650
[9.]
D. Ratnasinghe, S. Yao, J.A. Tangrea, Y. Qiao, M.R. Andersen, M.J. Barreto, et al.
Polymorphisms of the DNA Repair Gene XRCC1 and Lung Cancer Risk.
Cancer Epidemiol Biomarkers Prev, 10 (2001), pp. 119-123
[10.]
H. Checkoway, N.E. Pearce, D. Kriebel.
Research methods in occupational epidemiology.
Oxford University Press, (2004),
[11.]
M. Guxens, M. Nebot, C. Ariza.
Age and sex differences in factors associated with the onset of cannabis use: a cohot study.
Drug Alcohol Dependence, 88 (2007), pp. 234-243
[12.]
M. Szklo, F.J. Nieto.
Epidemiología intermedia: conceptos y aplicaciones.
Díaz de Santos, (2003),
[13.]
D.G. Kleinbaum, L.L. Kupper, H. Morgentern.
Epidemiologic research: principles and quantitative methods.
Lifetime Learning Publications, (2004),
[14.]
M. Delgado-Rodríguez, M. Sillero.
Revisión: diseños híbridos de estudios de cohortes y estudios de casos y controles.
Gac Sanit, 9 (1995), pp. 42-52
[15.]
M. Höfler, R. Lieb, A. Perkonigg, P. Schuster, H. Sonntag, H.U. Wittchen.
Covariates of cannabis use progression in a representative population sample of adolescents: a prospective examination of vulnerability and risk factors.
Addiction, 94 (1999), pp. 1679-1694
[16.]
S.L. Bailey, R.L. Hubbard.
Developmental variation in the context of marijuana initiation among adolescents.
J Health Soc Behav, 31 (1990), pp. 58-70
[17.]
D.M. Fergusson, M.T. Lynskey, L.J. Horwood.
Conduct problems and attention deficit behaviour in middle childhood and cannabis use by age 15.
Austr N Z J Psychiatry, 27 (1993), pp. 673-682
[18.]
J.A. Andrews, H. Hops, D. Ary, E. Tildesley, J. Harris.
Parental influence on early adolescent substance use: specific and nonspecific effects.
J Early Adolescence, 13 (1993), pp. 285-310
[19.]
H. Hops, T.E. Duncan, S.C. Duncan.
Parent substance use as a predictor of adolescent use: a six-year lagged analysis.
Ann Behav Med, 18 (1996), pp. 157-164
[20.]
D.B. Kandel, K. Yamaguchi, K. Chen.
Stages of progression in drug involvement from adolescence to adulthood: further evidence for gateway theory.
J Std Alcohol, 53 (1992), pp. 447-457
[21.]
A.R. Morral, D.F. McCaffrey, S.M. Paddock.
Reassessing the marijuana gateway effect.
Addiction, 97 (2002), pp. 1493-1504
[22.]
J.C. Anthony.
Death of the «stepping-stone» hypothesis and the «gateway» model? Comments on Morral et al.
Addiction, 97 (2002), pp. 1505-1507
[23.]
L. Abel, D.E. Bonney.
A time-dependent logistic hazard function for modeling variable age of onset in analysis of familial diseases.
Genet Epidemiol, 7 (1990), pp. 391-407
[24.]
P. Bovet, B. Viswanathan, D. Faeh, W. Warren.
Comparison of smoking, drinking, and marijuana use between students present or absent on the day of a school-based survey.
J Sch Health, 76 (2006), pp. 133-137
Copyright © 2007. Sociedad Española de Salud Pública y Administración Sanitaria
Download PDF
Idiomas
Gaceta Sanitaria
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?