Journal Information
Vol. 19. Issue 4.
Pages 333-341 (July - August 2005)
Vol. 19. Issue 4.
Pages 333-341 (July - August 2005)
Nota metodológica
Open Access
Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos
Statistical analysis of genetic polymorphisms in epidemiological studies
Visits
1222
Raquel Iniestaa, Elisabet Guinóa, Víctor Morenoa,b,
Corresponding author
v.moreno@iconcologia.net

Correspondencia: Dr. Víctor Moreno. Servicio de Epidemiología y Registro del Cáncer. Instituto Catalán de Oncología. Gran Vía, km 2,7. 08970 L’Hospitalet de Llobregat. Barcelona. España.
a Servicio de Epidemiología y Registro del Cáncer, IDIBELL, Instituto Catalán de Oncología, L’Hospitalet de Llobregat, Barcelona. España
b Unidad de Bioestadística, Facultad de Medicina, Universidad Autónoma de Barcelona, Barcelona, España
This item has received

Under a Creative Commons license
Article information
Resumen

El análisis de los polimorfismos genéticos permite identificar genes que confieren susceptibilidad a presentar enfermedades. En este trabajo se presenta la nomenclatura utilizada en la bibliografía de epidemiología genética y una estrategia básica de análisis estadístico de estudios epidemiológicos que incorporan estos marcadores. En primer lugar, se presenta el análisis descriptivo de un único polimorfismo y la evaluación del equilibrio Hardy-Weinberg. A continuación se presentan los métodos para evaluar la asociación con la enfermedad. Para ello se emplean modelos de regresión logística y se estudian los posibles modelos de herencia. Por último, se presentan métodos para el análisis simultáneo de multiples polimorfismos: estimación de las frecuencias de haplotipos y análisis de asociación con la enfermedad.

Palabras clave:
Epidemiología genética
Polimorfismo
Genotipo
Haplotipo
Análisis estadístico
Abstract

Analysis of genetic polymorphisms allows the genes that confer susceptibility to diseases to be analyzed. This paper presents the nomenclature used in genetic epidemiology literature and a basic strategy for statistical analysis of epidemiological studies that use genetic markers. First, a descriptive analysis of a single nucleotide polymorphism is presented, with assessment of Hardy-Weinberg equilibrium. Next, methods to assess the association with disease are presented. To do this, logistic regression models are used and alternative models of inheritance are explored. Finally, methods for the simultaneous analysis of multiple polymorphisms are presented: haplotype frequency estimation and analysis of disease association.

Key words:
Genetic epidemiology
Polymorphism
Genotype
Haplotype
Statistical analysis
Full text is only aviable in PDF
Bibliografía
[1.]
A.E. Guttmacher, F.S. Collins.
Genomic medicine–a primer.
N Engl J Med, 347 (2002), pp. 1512-1520
[2.]
M. Porta.
The genome sequence is a jazz score.
Int J Epidemiol, 32 (2003), pp. 29-31
[3.]
J.E. McWilliams, B.J. Sanderson, E.L. Harris, K.E. Richert-Boe, W.D. Henner.
Glutathione S-transferase M1 (GSTM1) deficiency and lung cancer risk.
Cancer Epidemiol Biomarkers Prev, 4 (1995), pp. 589-594
[4.]
M. Sorensen, H. Autrup, A. Tjonneland, K. Overvad, O. Raaschou-Nielsen.
Glutathione S-transferase T1 null-genotype is associated with an increased risk of lung cancer.
Int J Cancer, 110 (2004), pp. 219-224
[5.]
R.J. Hung, P. Boffetta, P. Brennan, et al.
GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a highrisk population.
Int J Cancer, 110 (2004), pp. 598-604
[6.]
S. Benhamou, W.J. Lee, A.K. Alexandrie, P. Boffeta, C. Bonchardy, P. Butkiewicz, et al.
Meta- and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk.
Carcinogenesis, 23 (2002), pp. 1343-1350
[7.]
W.J. Strittmatter, K.H. Weisgraber, D.Y. Huang, L.M. Dang, G.S. Salvesen, Pericak-Yance, et al.
Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoformspecific effects and implications for late-onset Alzheimer disease.
Proc Natl Acad Sci USA, 90 (1993), pp. 8098-8102
[8.]
M. Pandolfo.
Friedreich's ataxia: clinical aspects and pathogenesis.
Semin Neurol, 19 (1999), pp. 311-321
[9.]
N.E. Caporaso.
Why have we failed to find the low penetrance genetic constituents of common cancers?.
Cancer Epidemiol Biomarkers Prev, 11 (2002), pp. 1544-1549
[10.]
H.K. Tabor, N.J. Risch, R.M. Myers.
Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations.
Nat Rev Genet, 3 (2002), pp. 391-397
[11.]
L.R. Cardon, J.I. Bell.
Association study designs for complex diseases.
Nat Rev Genet, 2 (2001), pp. 91-99
[12.]
H. Zhao.
Family-based association studies.
Stat Methods Med Res, 9 (2000), pp. 563-587
[13.]
W.J. Gauderman, J.S. Witte, D.C. Thomas.
Family-based association studies.
J Natl Cancer Inst Monogr, 26 (1999), pp. 31-37
[14.]
R.C. Elston.
Introduction and overview. Statistical methods in genetic epidemiology.
Stat Methods Med Res, 9 (2000), pp. 527-541
[15.]
D.J. Schaid.
Disease-marker association.
Biostatistical genetics and genetic epidemiology, pp. 206-217
[16.]
D. Clayton.
Population association.
Handbook of statistical genetics, pp. 519-540
[17.]
A.G. Clark.
Inference of haplotypes from PCR-amplified samples of diploid populations.
Mol Biol Evol, 7 (1990), pp. 111-122
[18.]
L. Excoffier, M. Slatkin.
Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population.
Mol Biol Evol, 12 (1995), pp. 921-927
[19.]
A.P. Dempster, N.M. Laird, D.B. Rubin.
Maximum likelihood from incomplete data via the EM algorithm.
J R Stat Soc Ser B, 39 (1997), pp. 1-38
[20.]
M. Stephens, N.J. Smith, P. Donnelly.
A new statistical method for haplotype reconstruction from population data.
Am J Hum Genet, 68 (2001), pp. 978-989
[21.]
D. Clayton, J. Chapman, J. Cooper.
Use of unphased multilocus genotype data in indirect association studies.
Genet Epidemiol, 27 (2004), pp. 415-428
[22.]
H.J. Cordell, D.G. Clayton.
A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes.
Am J Hum Genet, 70 (2002),
[23.]
S.L. Lake, H. Lyon, K. Tantisira, et al.
Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous.
Hum Hered, 55 (2003), pp. 56-65
[24.]
The R Project [Consultado 5 Ene 2005]. Disponible en: http://www.r-project.org
[25.]
SNPHAP. A program for estimating frequencies of large haplotypes of SNPs. Cambridge: Department of Medical Genetics, Cambridge Institute for Medical Research [Consultado 5 Ene 2005]. Disponible en: http://wwwgene.cimr.cam.ac. uk/clayton/software/snphap.txt
[26.]
Schneider S, Roessli D, Excoffier L. Arlequin: a software for population genetics data analysis. Ver 2.000. Geneva: Genetics and Biometry Lab, Department of Anthropology, University of Geneva [Consultado 5 Ene 2005]. Disponible en: http://lgb.unige.ch/arlequin/
[27.]
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. [Consultado 5 Ene 2005]. Disponible en: http://www.broad.mit.edu/personal/jcbarret/haploview/
[28.]
EH linkage analysis software. New York: Rockefeller University [Consultado 5 Ene 2005]. Disponible en: http://linkage.rockefeller.edu/ott/eh.htm
[29.]
An alphabetic list of genetic analysis software. New York: Rockefeller University [Consultado 30 Sep 2004]. Disponible en: http://linkage.rockefeller.edu/soft
Copyright © 2005. Sociedad Española de Salud Pública y Administración Sanitaria
Download PDF
Idiomas
Gaceta Sanitaria
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?