019 - Comunicación Oral/Oral communication

Métodos II
Methods II

Viernes 3 de Octubre / Friday 3, October 9:00:00 a/to 11:00:00

Moderador/Chairperson:
Santiago Pérez Hoyos
REFUSERS IN A DISABILITY PREVENTION TRIAL IN OLDER
adult are less healthy: baseline and follow-up
ANALYSIS
Minder Christoph E. ${ }^{*}$, Stuck Andreas E.**, Gillmann Gerhard ${ }^{\text {*** }}$
${ }^{*}$ Dept of Social and Preventive Medicine, University of Berne, Bern, Switzerland. **Ge-
$\begin{aligned} & \text { *Dept of Social and Preventive Medicine, University of Berne, Bern, Switzerland. **Ge- } \\ & \text { riatric Research Unit, Spital Bern Ziegler, Bern, Switzerland. ***Dept of Social and }\end{aligned}$
$\begin{aligned} & \text { riatric Research Unit, Spital Bern Ziegler, Bern, Switzerland } \\ & \text { Preventive Medicine, University of Berne, Bern, Switzerland. }\end{aligned}$
Objectives: This study explored differences in health and
survival between refusers and participants in a longitudinal
study with extensive baseline and follow-up information.
Methods: Results of a trial comparing 791 participants and
401 community-residing older adults who refused to partici-
pate in a study concerning preventive home visits were exa-
mined. Information was collected from interviews, insuran-
ce records, and government files.
Results: Despite similarities in terms of age, sex, and self-
perceived health at baseline, refusers had a 1.53 -fold hig-
her risk of dying over 5 years than participants ($95 \% \mathrm{Cl}$: 1.20

- 1.94). Risk of refusers compared to participants for ente-
ring a nursing home over a 3 -year follow-up was 1.58 (95%
Cl : 1.05-2.36). Risks of dying and of nursing home admission
varied between refusers and participants when refusers ac-
cording to self-reported reason for refusal (too ill, too healthy,
no interest, and other reasons).
Conclusions: Future studies should include follow-up data
to allow comparisons between refusers and participants and
should address the presence of multiple subgroups of refu-
sers with varying health prospects.

PUBLISHED DRUG EFFECTIVENESS STUDIES USING SECON-

 DARY DATA SOURCESJudith Strobl, Tom Walley
Department of Pharmacology \& Therapeutics, University of Liverpool, Liverpool, UK.
Background: Increasingly, clinical patient-level data are collected routinely in patient registries or disease databases in primary or secondary care. These data might offer a ready means to assess drug effectiveness in a naturalistic setting. Potentia hurdles for effectiveness studies using secondary data sources include data access and data protection issues, the quality and applicability of the available data, potential biases, and the need for complex analysis methods.
Objectives: To identify and review published studies assessing the effectiveness of a specific drug treatment by using exclusively existing data from patient regis tries, databases, or electronic patient record systems.
Methods: We searched Medline [1966-2002] restricted to journals included in the Index Medicus. We included studies evaluating a particular drug using patient-leve data collected routinely as part of an electronic patient record system, a registry or database, and not for the exclusive purpose of addressing the objectives of the reported study or another single research hypothesis. Studies had to involve a comparison group.
Results: Forty-two published "database studies" met our inclusion criteria. Eighteen studies investigated treatments or preventative interventions in chronic conditions, and a further four studies evaluated HIV/AIDS treatment. Twenty-five studies defined their primary outcomes through clinical information (including hospitalisation episodes), five studies defined primary outcomes based on drug treatment data. Only few studies took dose and continuity of the investigational treatment into account. Thirty-eight studies (90\%) were retrospective cohort studies. Ten studies are known to have been approved by a research ethics committee. Published reports rarely clarify whether fully anonymised data has been used, but in most studies this is unlikely to be possible. Only one study explicitly reported seeking patient consent. Seventeen studies (40%) have at least been partly funded by industry sources. Seven studies report having undertaken data validation against other data sources; four further studies have used data sources previously validated. Conclusion: Drug effectiveness evaluations using secondary data seem to be particularly common in chronic disease areas, with some studies reporting follow-up periods well exceeding those usual in randomised controlled trials. Published reports vary considerably in their attention to data description, sampling, data quality, and data protection and confidentiality issues. Further work should focus on (1) recommendations for best (reporting) practice, (2) the rationale for the choice of study design and data source for the evaluation of a particular treatment, and (3) the role of "database studies" in health technology assessment.

META ANALYSIS: DEALING WITH HETEROGENEITY AND DISCRETE DISTRIBUTIONS

Ramon Clèries*, Josepa Ribes*, Víctor Moreno*, José Miguel Martínez**, F. Xavier Bosch*
*Servei d'Epidemiologia i Registre del Càncer, Institut Català d'Oncología, Hospitalet de Llobregat, España. **Unitat de Recerca Laboral, Universitat Pompeu Fabra, Bar celona.

Introduction: There are several cohort studies among Hepatitis B Virus (HVB) carriers worldwide, which show association between HBV infection and Hepatocellular Carcinoma (HC). The relative risk estimated in each study indicates differences between countries and also, depending on the control group, within countries. Our main issue is to estimate how these studies can be grouped, and then modelling the relative risk in terms of covariates measured in each country. These variables are: alcohol consumption, hepatitis viruses prevalence, size of study, follow up and control group (Blood donors or general population). We have selected 12 studies which comply with the requirements to be included and which we have measured the covariates.
Methods: The statistic used to estimate the relative risk has been the Standardized Mortality Ratio (SMR). The SMR is the ratio between observed and expected number of liver cancer cases in each study. To determine the subgroups or clusters it has been used two methods: classical meta analysis and a maximum likelihood nonparametric estimator (MLNPE, Böhning-1996). Once determined the number of clusters and the SMR estimated for each one of them, we proceed to calculate the probability that a study belongs to each cluster. These estimation are compared with the estimation obtained by a compound distribution: poisson stopped binomial (PSB, Douglas-1980). For modelling the SMR by the risk factors we have used a generalized linear mixed model which accounts for geographical heterogeneity.
Results: The global SMR has been estimated around 18 (IC95\%:10.7-32.1), and there's 3 clusters detected by the MLNPE.: Two groups: Taiwan-China and Japan-Europe-USA. Each one of those two groups have also two subgroups determined by the control group.
Conclusions: In the classical meta analysis method it is not possible to determine clusters by means of SMR estimates and its confidence intervals, and only residuals analysis helps to indicate a possibly cluster. On the other hand, clusters can be estimated by the MLNPE, but variance within the cluster it is difficult to compute. To solve this problem we propose first to estimate the possibles clusters by MLNPE and then estimate the SMR for each by means of the PSB.

XXI Reunión Científica de la Sociedad Española de Epidemiología, conjunta con la
Federación Europea de Epidemiología de la Asociación Internacional de Epidemiología

SELECTION BIAS/INTRACTABLE CONFOUNDING IN EPIDEMIOLOGIC STUDIES IN ELDERLY POPULATIONS
Roberto Pastor-Barriuso*, Eliseo Guallar**, Ana Navas-Acién**, Javier Damián*
${ }^{*}$ Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain. **Department of Epidemiology and Welch Center, Johns Hopkins Medical Institutions, Baltimore, USA.
Introduction: Epidemiologic studies of chronic diseases frequently find an age-related decrease in the relative risk associated to most risk factors. A common explanation for this phenomenon is that survival selects subjects who are no longer susceptible to the risk factor of interest, although so far no gene or combination of factors has been identified to explain non-susceptibility among survivors. This study provides an alternative explanation based on the confounding induced over time by all other known or unknown risk factors related to the disease.
Methods: To explore the potential magnitude of this effect, a simulation study of a cohort of 10,000 subjects aged 35 years at enrollment was performed under the following conditions: (a) the dichotomous risk factor of interest was randomly assigned to each subject for a given baseline prevalence, and the relative risk of exposed to non-exposed subjects was assumed to be constant over time; (b) other risk factors were aggregated into a common risk score, randomly generated from a normal distribution and assumed to be independent of the main risk factor at baseline; and (c) each subject's annual hazard of death was assigned from a proportional hazard model according to the above covariate pattern and to an average annual hazard obtained from the US life table in 1999. Several scenarios were considered for different combinations of the baseline prevalence p, the true relative risk $R R$, and the proportion in the variability of baseline hazards k explained by the main factor of interest.
Results: There was a relatively higher death rate among those exposed subjects with higher risk score, so that with advancing age, exposed survivors had lower risk scores than non-exposed survivors. This selection mechanism induced a negative association between the main risk factor and risk score among survivors, and consequently relative risks of exposed to non-exposed were progressively biased towards the null. For $p=0.40$, $R R=2$, and $k=0.05$, the estimated relative risks at ages 50,65 , and 80 years were $1.80,1.59$, and 1.38 , respectively. The decline was even more marked with the true relative risk increased and the variability explain by the main risk factor decreased.
Conclusions: This selection bias provides an explanation for the decline in relative risks with aging that could potentially affect all risk factors in observational studies. Control of this bias may be seriously limited by the lack of information on most determinants of risk. In contrast to the susceptibility postulate, under which it may no longer make sense to intervene on risk factors in aging populations, the proposed explanation suggests tha age-related declines may just reflect increasing confounding, and hence it will be still very important to intervene on risk factors in elderly subjects.

ALLOWING FOR INDIVIDUALS' RISK AWARENESS WHEN INVESTIGATING RELATIONSHIPS OF BEHAVIOURAL RISK FACTORS TO SUBSEQUENT CANCER AND HEART DISEASE IN COHORT STUDIES

David R. Boniface*, Margaret E. Tefft**
${ }^{*}$ *ept. of Epidemiology and Public Health, University College London, London, UK. ${ }^{* *}$ Dept. of Statistics, University of Hertfordshire, Hatfield, UK.
Introduction: A number of health behaviours such as diet, exercise and smoking, have been implicated in both heart disease and cancer. When examining the relationships of these factors to subsequent heart disease and cancer mortality it is necessary to exclude those individuals whose behaviours are likely to have been modified due to their awareness of early warnings or risk of the disease. Examples are recommendations of special diet after discovery at screening of high serum cholesterol or after discovery of polyps at sigmoidoscopy screening. Such individuals will report low risk levels of the health behaviour but be at raised risk of developing the disease during the follow-up period. Such individuals, if not excluded from analysis, will obscure the true relationship of the behaviour to the disease where it may exist in the general population. Where the same behaviour is suspected of carrying risks for both cancer and heart disease it may be necessary, when investigating factors related to the development of cancer, to consider excluding individuals reporting heart disease or awareness of raised heart disease risk and vice versa.
Methods: A cohort of 9003 randomly selected men and women in Great Britain was interviewed for the Health and Lifestyle Survey in 1984-85 and monitored subsequently for 17.5 years for deaths. The interview covered health, health-related behaviours, physical measurements, socio-demographic details and a dietary questionnaire. There were 2604 men and 2644 women aged $40-75$ with 270 and 248 cancer deaths respectively and with 287 and 184 CHD deaths. Alternative approaches were applied to exclusions before carrying out survival analyses relating behaviours to subsequent death.
Results and Conclusions: Findings from the Health and Lifestyle Survey from survival analysis for the relationship of behavioural risk factors for cancer death and for CHD death were shown to depend critically on decisions made about exclusions for participant awareness of raised risk not only for whichever was the target disease, but also for the other disease where it has the same behavioural risk factors.

