Human rights in the Horn of Africa: an index of child and maternal health

Karla Aída Zermeño Mejía, Karen Giovanna Añaños Bedriñana, José María Martín Martín, José Antonio Salinas Fernández, José Antonio Rodríguez Martín

© 2019 SESPAS. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Los derechos humanos en el Cuerno de África: un índice de salud infantil y materna

© 2019 SESPAS. Publicado por Elsevier España, S.L.U. Este es un artículo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

On 1st January 2016, the world officially began implementation of the action plan based on Sustainable Development Goals (SDGs). Goal three aims to ensure health and well-being for all people of all ages by improving reproductive, maternal and child health. Study of the Horn of Africa countries is especially important, as the situation remains disastrous. The Horn of Africa region is plagued by a set of complex, often interrelated factors including environmental degradation, climate-related disasters such as droughts and floods. Multiple factors hinder access to and utilization of health services in the Horn of Africa. These factors include lack of a functional health system, geographical accessibility, financial barriers and limited availability of services.
In this study, the objective is to construct a synthetic indicator of maternal and child health to enable comparison between five countries in 2017 in the Horn of Africa.

The index also allows to study the impact of each variable individually so as to determine disparities in the variables associated with the SDGs for each country. Additionally, the research explores the relative impact of each variable by using the correction factor.

Method

The methodological approaches used in this study are based on the construction of a synthetic index that follows Pena’s method (DP). The DP provides an ideal solution to the problems involved in devising a synthetic indicator, particularly those related to aggregation and weighting of simple indicators and information duplicity.

The DP measures the distance between the issue studied in each country and a fictitious base reference. We take as reference a theoretical country that obtains the worst values for the variables studied.

The DP from country \(j \) is defined as follows:

\[
DP_{2} = \sum_{i=1}^{n} \left\{ \frac{(d_{i}/\sigma_{i})}{1 - R^{2}_{i,j,1,...,k}} \right\}
\]

where \(d_{i} = |x_{ij} - \bar{x}_{i}| \) is the distance between the value of variable \(i \) in country \(j \) and the reference base. The reference base comprises the results from an imaginary country which reflects the worst possible scenario for all the variables where \(X_{i} = (x_{i1}, x_{i2}, ..., x_{in}) \) coincides with the minimum vector. The reference base would therefore be attributed a value of zero in the synthetic indicator, \(n \) is the number of variables, \(\sigma_{i} \) is the standard deviation of variable \(i \), and \((1-R^{2}_{i,j,1,...,k})\) is a “correction factor” that avoids redundancy.

The coefficient of determination, \(R^{2}_{i,j,1,...,k} \), is the determination coefficient in regression \(X_{i} \) over \(X_{j,1}, X_{j,2}, ..., X_{j,n} \), which is already included, with \(R^{2}=0 \). Put differently, the coefficient measures the part of the variance of each variable explained by the linear regression estimated using the preceding variables. The ordering of the variables corresponds to their relative weight measured in terms of linear correlation with the final synthetic indicator. The input order of the variables is determined by an algorithm that reaches convergence when the indicator fulfills a number of desirable properties.

It is also possible to establish an order or hierarchy based on the amount of information that each variable contributes to the DP. To determine this, we construct the Ivanovic Discrimination Coefficient (IDC).

Data were collected from the work of the United Nations Statistical Commission, which created the Inter-agency and Expert Group on SDG Indicators (IAEG-SDGs). In particular, we used five variables of child and maternal health associated with the goal 3 (Table 1), using as a reference the detailed information contained in a set of variables set out under the SDGs in the Report 2018, which provide a more extensive and more reliable set of statistics on the SDG 3 of Horn of Africa. The countries included into the analysis were Ethiopia, Kenya, Somalia, Eritrea, and Djibouti. To guarantee fulfillment of the properties of the synthetic indicator, we multiply specific variables whose increase implies a worsening of the child and maternal health by \(-1\).

Results

The year of analysis is 2017, but for those variables where information was not available for that date, the nearest year was taken as an alternative. The year 2016 is included in the variable “Attended by skilled health personnel, percentage”, whose available information is from 2016.

The resulting classification (Table 2) shows, first, a distance of almost 5 points between the best-ranked country (Djibouti) and the worst-ranked (Somalia) in 2017. These results indicate a relatively high disparity between the countries analysed.

The results show that Djibouti made the greatest progress toward the goals for child and maternal health, with a distance of 4.56 from the baseline (Table 2). It was followed by Kenya (3.46), which accounts for 29% of the total population of the Horn of Africa.

Taken together, Somalia and Ethiopia account for nearly 70% of the population of the Horn of Africa. They, in contrast, are the countries with the worst theoretical scenarios (Table 2). If we analyse the results obtained for the variables with the greatest inequality in intercountry values (IDC), the most discriminating variable is “Attended by skilled health personnel, percentage” (Table 1). The second-most-discriminating variable is “Maternal mortality ratio per 100,000 live births”.

In addition, by means of correction factors, the synthetic indicator DP2 only includes the new information from each variable.

Table 1

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Partial indicators</th>
<th>Total population of the Horn of Africa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attended by skilled health personnel, percentage</td>
<td>0.88</td>
<td>0.69</td>
</tr>
<tr>
<td>Maternal mortality ratio per 100,000 live births (negative sign)</td>
<td>0.61</td>
<td>1.00</td>
</tr>
<tr>
<td>Children under five mortality rate per 1,000 live births (negative sign)</td>
<td>0.42</td>
<td>0.33</td>
</tr>
<tr>
<td>Adolescent birth rate, per 1,000 women</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>Prevalence of underweight (% of children under) (negative sign)</td>
<td>0.14</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Country</th>
<th>Pena's relative distance (DP)</th>
<th>Total population of the Horn of Africa (%)</th>
<th>Human Development Index (HDI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Djibouti</td>
<td>4.56</td>
<td>0.51</td>
<td>0.48</td>
</tr>
<tr>
<td>Kenya</td>
<td>3.46</td>
<td>29.00</td>
<td>0.59</td>
</tr>
<tr>
<td>Eritrea</td>
<td>2.71</td>
<td>1.02</td>
<td>0.44</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>1.85</td>
<td>63.00</td>
<td>0.46</td>
</tr>
<tr>
<td>Somalia</td>
<td>0.10</td>
<td>6.47</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA: not available.

* Countries with high HDI (>0.8), with medium HDI (0.5–<0.8) and with low HDI (HDI < 0.5).
correction factor is 100%, as a result of being most closely correlated with it (Table 1).

Discussion and conclusion

The DP$_2$ method shows territorial disparities in child and maternal health in the Horn of Africa in 2017. We obtained a difference of 4.56 units between Djibouti and the reference value. Djibouti achieved a higher level of child and maternal health, but it accounts for only 0.5% of the total Horn of Africa population. At the opposite extreme, Somalia registers extremely low values in the set of partial indicators.

Priority must be given to interventions to address the variables that have greater power to explain the differences in the values ??between countries relative —primarily the variable “Attended by skilled health personnel, percentage”.

The differing values of these variables suggest that progress in maternal health is uneven throughout the Horn of Africa, while fewer territorial differences exist in the variables associated with child health as defined in the SDGs.

In summary, delivery of health services is greatly in need of improvement, especially in Somalia and Ethiopia, and there is an urgent need to increase the number of health workers throughout the region to lower maternal and infant mortality.14

In general, the DP$_2$ classification for these countries differs from that made by the Human Development Index (HDI) for countries with low human development in 2017 (Table 2). In this sense, our analysis takes into account a range of SDGs variables, some of which are not included in the HDI.

What is known about the topic?

Several factors must be analysed and monitored on a priority and constant basis in the decision-making process for distribution of international aid to the countries of the Horn of Africa to improve maternal and child health. Research on the evolution of variables associated with maternal and child health in these countries is very limited.

What does this study add to the literature?

The study provides a complete, up-to-date classification of the Horn of Africa, based on the values of the variables associated with maternal and child health. It also provides information on the variables that best explain the differences between countries. We conclude that the heterogeneous situations of the countries differ from the goals projected by United Nations. The most notable differences relate to the number of births attended by qualified health personnel.

References